	Project: MDAS-4
	ref. iMDAS-TFQR-IS-EN

	Product: Tax Free declarations QR code specification
	ver. 1.00

	
	[image: LOGO]
Customs Department under the Ministry of Finance of the
Republic of Lithuania
	

	

CUSTOMS DECLARATIONS PROCESSING SYSTEM

Tax Free declarations QR code specification

Reference iMDAS-TFQR-IS-EN

Version 1.00

Document control
	Project
	MDAS-4

	Product
	Tax Free declarations QR code specification

	Description
	The specification defines data set of Tax Free declaration to be presented for customs control within QR code for iMDAS system by traders (sellers) application.

	Files | pages
	iMDAS-TFQR-IS-EN_1.00.docx
	8

Revisions
	Ver.
	Date
	Description
	Actions*
	Chapters

	0.10
	2021-11-03
	First draft version
	C
	All

	0.20
	2021-11-05
	Version after LC remarks
	C
	All

	0.30
	2021-11-08
	Version after LC remarks
	C
	All

	0.40
	2021-11-12
	Adding customer data
	C
	All

	1.00
	2021-11-16
	First final version
	C
	All

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

* Actions: I = Insert, C = Change, D = Delete

Table of contents

1	Introduction	3
2	Input data structure	4
3	QR code generation procedure	6
3.1	Removing formatting from Json	6
3.2	Compressing data	6
3.3	Base64 encoding	6
3.4	Check sum calculation	7
3.5	Creating envelope structures	7
3.6	QR code generation	8

[bookmark: _Toc87269540]Introduction
Specification describes, how properly to generate QR code for Tax-Free declaration. It defines Json data structure, representing subset of Tax-Free declaration enough for Customs clearance, as well as QR code generation algorithm.

[bookmark: _Toc87269541]Input data structure
QR code used for customs control (including business continuity (fallback) procedure, when Information System(s) are temporary unavailable), contains limited data set from corresponding Tax-Free declaration. Structure is Json encoded. Following table describes QR code declaration’s logical structure. Element docHeader contains header data and list of sales documents, represented by salesDocument structure. Each sales document can represent receipt or invoice. In case of receipt, cashRegisterReceipt structure should be provided. Otherwise, invoice number is required. List of goods is represented by the salesDocument.goods structure. salesDocument.goods.sequenceNo should be continuous through whole declaration. For every goods item, either salesDocument.goods.unitOfMeasureCode or salesDocument.goods.unitOfMeasureOther should be provided.
Field salesDocument.goods.totalAmount contains gross amount (incuding VAT) in EUR of the goods item.

	Element
	Type
	Max Size
	Remarks

	docHeader
	
	
	

	docHeader.docId
	string
	34
	

	docHeader.docCorrNo
	long
	2
	

	docHeader.completionDate
	date
	10
	Format: YYYY-MM-DD

	customer
	
	
	

	customer.firstName
	string
	200
	

	customer.lastName
	string
	200
	

	salesDocument
	list
	
	

	salesDocument.cashRegisterReceipt
	
	
	Either CashRegisterReceipt or InvoiceNo should be provided.

	salesDocument.cashRegisterReceipt.cashRegisterNo
	string
	50
	

	salesDocument.cashRegisterReceipt.receiptNo
	string
	70
	

	salesDocument.invoiceNo
	string
	70
	Either CashRegisterReceipt or InvoiceNo should be provided.

	salesDocument.goods
	list
	
	

	salesDocument.goods.sequenceNo
	long
	4
	

	salesDocument.goods.description
	string
	500
	

	salesDocument.goods.quantity
	decimal
	
	

	salesDocument.goods.unitOfMeasureCode
	string
	3
	Either UnitOfMeasureCode or UnitOfMeasureOther should be provided.

	salesDocument.goods.unitOfMeasureOther
	string
	50
	

	salesDocument.goods.totalAmount
	decimal
	
	

Table 1 Logical structure of the Tax-Free declaration for QR code.

Json structure for example declaration is presented below. Null elements can be omitted in real implementation.
{
 "docHeader": {
 "docId": "SOME-DOC-ID",
 "docCorrNo": 99,
 "completionDate": "2021-11-05"
 },
 "customer": {
 "firstName": "John",
 "lastName": "Doe"
 },
 "salesDocument": [
 {
 "cashRegisterReceipt": {
 "cashRegisterNo": "15",
 "receiptNo": "220"
 },
 "invoiceNo": null,
 "salesDate": "2021-11-05",
 "goods": [
 {
 "sequenceNo": 1,
 "description": "Lorem ipsum dolor sit amet, consectetur adipiscing elit 1",
 "quantity": 10,
 "unitOfMeasureCode": "NAR",
 "unitOfMeasureOther": null,
 "totalAmount": 56.50
 },
 {
 "sequenceNo": 2,
 "description": "Lorem ipsum dolor sit amet, consectetur adipiscing elit 2",
 "quantity": 10,
 "unitOfMeasureCode": null,
 "unitOfMeasureOther": "Other unit of measure",
 "totalAmount": 57.50
 }
]
 },
 {
 "invoiceNo": "SOME-INVOICE-NO",
 "salesDate": "2021-11-05",
 "goods": [
 {
 "sequenceNo": 3,
 "description": "Lorem ipsum dolor sit amet, consectetur adipiscing elit 1",
 "quantity": 10.2,
 "unitOfMeasureCode": "KGM",
 "unitOfMeasureOther": null,
 "totalAmount": 56.50
 },
 {
 "sequenceNo": 4,
 "description": "Lorem ipsum dolor sit amet, consectetur adipiscing elit 2",
 "quantity": 10,
 "unitOfMeasureCode": null,
 "unitOfMeasureOther": "Other unit of measure",
 "totalAmount": 57.50
 }
]
 }
]
}

[bookmark: _Toc87269542]QR code generation procedure
QR code has limited capacity. Theoretically it is 4 kB, however in practice, code generation software throws “data to big” exceptions little bit above 2 kB. That is why, to provide possibility of pack into QR code theoretically unlimited number of sales documents and goods items, as defined in this Specification, following procedure will be used for encoding and packing initial data structure.
[bookmark: _Toc87269543]Removing formatting from Json
To maximally pack data, all formatting characters (tabs and new lines) should be removed from Json before further proceeding.

[bookmark: _Toc87269544] Compressing data
Next, Json string should be compressed by GZIP algorithm. Example Java code for compressing looks as follows.

protected byte[] compress(final String text) throws IOException {
 final ByteArrayOutputStream baos = new ByteArrayOutputStream();
 final GZIPOutputStream compressor = new GZIPOutputStream(baos);

 compressor.write(text.getBytes("utf-8"));
 compressor.finish();
 compressor.close();
 return baos.toByteArray();
}

[bookmark: _Toc87269545]Base64 encoding
Compressed byte array should be Base64 encoded, to place in QR code, which requires string data.
Example Java code (using org.apache.commons.codec.binary.Base64):

byte[] bytes = compress(json);
return Base64.encodeBase64String(bytes);

As a result, we receive String data, containing encoded binary table with zipped Json.
Example:
H4sIAAAAAAAAAK2QQWvDMAyF/4rROR1JoBvNrTSDdawNdMexg3HU1mBbqS0PRul/n92wsXU77FAcMHmSnr7nI/SkHlD26KE55p9lDw08d6v7SdstJssWiqwuyPs1QTObFaDIDgZZk2slY+quy7qaVOmr4ZTKMTDZ0W+rfeC1tLnrkfYumRn5pbSEeSBIg6ElFS06hublCEqG/QZ3OjD6DSrUA2e373KGgWqaDP3YcBbqusyO2r2RVpglF435XPGLtoAdUR/OOwMeIrpxqEqZMSifbFPKNPNEHq3QQ4hW9GTIi6BZpBRcCEUuoGLk6IXs9aCD0m4n0KSOKq04ROlY83uyLQuITnO3XaEM0eOC+ky0nm/gotLxPr/gSM/E0swtxfw809ubaXkqfgLX1wKu/wM8Uv3FC+db5JKgrbBjES4j3OUIr+l8AC8rbHt/AgAA

[bookmark: _Toc87269546]Check sum calculation
Due to the limitation of single QR code, larger encoded strings will be split into several QR codes. In order to ensure, that final result is complete and not corrupted, we should calculate checksum before chunking it.
For calculation of the check sum, Adler32 algorithm should be used (Java implementation: java.util.zip.Adler32).
Example Java code:

public String calculateCheckSum(String data) {
 final Adler32 adler32 = new Adler32();
 adler32.update(data.getBytes());
 return String.format("%08X", adler32.getValue());
}

[bookmark: _Toc87269547]Creating envelope structures
Taking into account limitation of QR code generation software and limits of precise printouts, Base64 encoded string should be split into 2 kB chunks, if it is larger than 2kB. Each chunk should be encoded in the separate QR code. In order to restore original string from chunks, every chunk should be packed into Json envelope. Example envelope is shown below. Data in the example is truncated for presentation purposes.
{
 "data": "H4sIAAAAAAAAAK2QT2vDMAzFv4r[...]",
 "chunk": 1,
 "total": 1,
 "checksum": "B24592D7"
}

Element data contains chunk of string. Element chunk informs on number of chunk, starting from 1. Element total inform about total number of chunks (and of course generated QR codes). Element checksum contains calculated checksum.

[bookmark: _Toc87269548]QR code generation
QR code is generated directly from envelope structure. Example Java code for generation, using QRGen library (https://github.com/kenglxn/QRGen):
public byte[] generateQrCode(String txt) {
 txt = txt.replaceAll("\n", "");
 txt = txt.replaceAll("\r", "");
 ByteArrayOutputStream stream = QRCode.from(txt)
 .withErrorCorrection(ErrorCorrectionLevel.M)
 .withSize(400, 400)
 .stream();
 byte[] qrCode = stream.toByteArray();
 return qrCode;
}

Resulting byte array contains png image of generated QR code. It can be saved as a file or used as a dynamic resource (e.g. mobile devises) or printed on paper Tax-Free declaration..

Example image:
[image:]
Picture 1 Example generated QR code

page 1/2
image1.png

image2.tiff

